Related Work

Cognon Neural Model Software Verification and Hardware Implementation Design

Author: Haro Negre, Pau
Publication Year: 2013
Publication Number: AAT 1552064; ISBN: 9781303710643
Affiliation: University of Colorado at Boulder
Advisor: Gasiewski, Albin J.
ProQuest Document URL:
Complete Text: PDF


Little is known yet about how the brain can recognize arbitrary sensory patterns within milliseconds using neural spikes to communicate information between neurons. In a typical brain there are several layers of neurons, with each neuron axon connecting to ∼10 4 synapses of neurons in an adjacent layer. The information necessary for cognition is contained in theses synapses, which strengthen during the learning phase in response to newly presented spike patterns.

Continuing on the model proposed in "Models for Neural Spike Computation and Cognition" by David H. Staelin and Carl H. Staelin, this study seeks to understand cognition from an information theoretic perspective and develop potential models for artificial implementation of cognition based on neuronal models. To do so we focus on the mathematical properties and limitations of spike-based cognition consistent with existing neurological observations. We validate the cognon model through software simulation and develop concepts for an optical hardware implementation of a network of artificial neural cognons.

Complete Text: PDF